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We theoretically and numerically study the evolution of axisymmetrical surface waves of a wetting liquid
film on a rotating or nonrotating disk. Shock waves may form and propagate driven by the centrifugal and
external shearing forces. Surface tension and disjoining pressure due to van der Waals force provide diffusion
to the system and smear the surface waves. Multiple waves of a molecularly thin liquid film are merged by the
disjoining pressure. Surface waves are planarized by the centrifugal force, surface tension, external shearing
force and disjoining pressure.
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I. INTRODUCTION

A thin liquid layer flows on the surface of a rotating disk
in many scientific and industrial applications. Two of the
examples are the spin coating process and the lubrication of
magnetic disk surfaces in a modern hard disk drive.

The spin coating technique has been widely used to coat
uniform films �for example photoresists� on substrates. In the
spin coating process, a liquid droplet is placed at the center
of a rotating disk. The droplet spreads outwards driven by
the centrifugal spinning and its profile becomes increasingly
flat. Eventually a thin film of uniform thickness is left on the
disk surface. The fluid dynamics aspects of the spin coating
problem have received wide attentions due to its importance
and significant literatures already exist �1–12�. Emslie et al.
formulated the first hydrodynamic theory to study the rate of
liquid film thinning of a Newtonian flow on a smooth disk
under the action of centrifugal and viscous shear forces �1�.
Non-Newtonian theories were developed for more compli-
cated polymer systems by Acrivos et al. �2� and Flack et al.
�3�. The effect of evaporation of solvent was taken into ac-
count by Meyerhofer �4�. Yanagisawa analyzed the velocity
slippage effect at the disk surface �5�. Middleman �6�, Rehg
and Higgins �7� considered the effect of external air shearing.
The planarization of uneven substrate topography by spin
coating has been studied by Stillwagon and Larson �8,9�.
Troian et al. theoretically �10� and Fraysse and Homsey ex-
perimentally �11� identified a fingering instability at the ex-
panding front of the liquid region. More information about
the spin coating and other thin liquid film flow phenomena is
available in the review article �12�.

In modern hard disk drives, a molecularly thin lubricant
layer is coated on the rotating magnetic disk to provide the
necessary lubrication and protection to the disk surface �13�.
Kim et al. studied the lubricant depletion phenomenon by
considering the effects of physical parameters such as the
disk surface roughness, surface tension and disjoining pres-
sure �14�.

Due to different sources of disturbance, surface undula-
tions of a liquid film on a rotating disk are unavoidable.
Under the action of viscous force, centrifugal force, external
shearing force, surface tension, and disjoining pressure, the
undulations propagate in the form of a surface wave train. It
is essential to understand how the surface waves evolve and

propagate for the different applications to be successful.
In this paper, we theoretically and numerically study the

axisymmetrical surface wave propagation phenomenon of a
thin liquid film on a rotating or nonrotating disk under the
lubrication condition. For liquid films on a rotating disk, the
flow is driven by the centrifugal spinning. For liquid films on
a nonrotating disk, the flow is driven by the external shearing
force of an immiscible fluid blowing normal to the disk sur-
face. We focus on the propagation of waves with long wave-
length �surface tension effect is weak or negligible� and only
briefly discuss the surface tension effect on the wave propa-
gation. The effects of other important physical parameters
such as the viscous force, centrifugal force, external shearing
force and disjoining pressure are discussed in details. Inter-
esting phenomena such as shock wave �hydraulic jump� for-
mation and propagation, wave planarization �the reduction of
wave undulation�, and wave merging, are studied in detail.

II. THE FILM THICKNESS EVOLUTION EQUATION

Scarpulla et al.’s experiments show that the flow of mo-
lecularly thin liquid films on a solid surface can still be de-
scribed by the continuum theory with the adoption of an
enhanced effective viscosity �15�. As a result, we study our
current problem from a continuum point of view. Under lu-
brication and axisymmetric conditions, when both gravity
and Coriolis force are negligible due to a small film thick-
ness and a small radial velocity, the radial momentum equa-
tion for the flow of a Newtonian liquid on a rotating disk
reduces to

− ��2r +
�p

�r
= �

�2u

�z2 , �1�

where r is the radial coordinate, z is the coordinate normal to
the disk surface, � is the rotating speed of the disk, u is the
radial velocity, p is the pressure, � is the density, and � is the
dynamic viscosity of the liquid, respectively �see Fig. 1�
�14�. The lubrication assumption is valid when both Rey-
nolds number of the flow Re=�umaxh0

2 / ��r0� and slope of the
film profile �h /�r are much smaller than 1, where h0 is the
vertical length scale, r0 is the horizontal length scale, and h is
the film thickness, respectively. Under lubrication condition,
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p is uniform across the film thickness, i.e., it does not depend
on z. The radial velocity u is obtained by a direct integration
of Eq. �1� in the z direction subject to a non-slip boundary
condition at the disk surface

�u�z=0 = 0, �2a�

and a continuity of shear stress condition at the interface

��
�u

�z
�

z=h
= A*r , �2b�

where A*=�3/2�0
−1/2�0 /2 is a friction coefficent due to the

shearing force imposed on the interface by the external flow
induced by the rotating disk �for example, centrifugal pump
flow of air or a different immiscible liquid� �6,16�. The film
thickness h is a function of the radial coordinate r and time t.
The kinematic and dynamic viscosities of the external fluid
are denoted �0 and �0, respectively. The resulting velocity u
from the integration is

u =
1

�
�− ��2r +

�p

�r
�� z2

2
− hz� +

1

�
A*rz . �3�

The volume flow rate per unit length of circumference q is
calculated from the velocity distribution Eq. �3� as

q = 	
0

h

udz =
1

3�
���2r −

�p

�r
�h3 +

1

2�
A*rh2. �4�

Under axisymmetric condition, the mass balance equation
for the liquid film can be written as

�h

�t
+

1

r

�

�r
�rq� = 0. �5�

The evolution equation for the film thickness h is obtained
by substituting Eq. �4� into Eq. �5� to yield

�h

�t
+

1

6�

1

r

�

�r

2���2r2 − r

�p

�r
�h3 + 3A*r2h2� = 0. �6�

The pressure p within the film is obtained by a normal stress
balance at the interface

p = p0 − � − �
1

r

�

�r
�r

�h

�r
� , �7�

where p0 is the pressure of the external fluid �taken to be
constant in this paper�, � is the surface tension coefficient,
and �=A3 /h3 is the disjoining pressure due to van der Waals
force �A3 is the Hamaker constant and has a positive value
for wetting liquids� �17�. Substituting Eq. �7� into Eq. �6� and
normalizing it, we obtain the dimensionless governing equa-
tion for the film thickness

��RH�
�T

+
�

�R
�R2H3 + CsR

2H2 − Cdv
R

H

�H

�R

+ C�RH3 �

�R

 1

R

�

�R
�R

�H

�R
�� = 0, �8�

where T= t��2h0
2 /3�, R=r /r0, and H�R ,T�=h�r , t� /h0 are

the dimensionless time, radial coordinate, film thickness, and
external pressure, respectively. The horizontal length scale r0
is chosen to be the radial coordinate of the inner boundary of
the flow domain to be considered �see Fig. 1�. The initial
thickness h0 of the flat part film is used as our vertical length
scale. Equation �8� have three dimensionless groups. The di-
mensionless group Cs=3A* / �2��2h0� represents the ratio be-
tween external shearing force and centrifugal force. Simi-
larly, Cdv=3A3 / ���2r0

2h0
3� is the ratio of disjoining pressure

force to centrifugal force and C�=�h0 / ���2r0
4� is the ratio of

surface tension force to centrifugal force, respectively.
Equation �8� is a strongly nonlinear convection-diffusion

type PDE and is numerically solved by an implicit finite
volume method. The unsteady term is descretized by a first
order backward time stepping method under a lump assump-
tion. The centrifugal force, air shearing force, and disjoining
pressure terms are descretized by a hybrid method in �18�.
The surface tension term is descretized by the Crank-
Nicolson method �19�. The linearized sparse matrix within
each iteration is inverted by a preconditioned BiConjugate
Gradient method �20�. At the two horizontal ends of the
simulation domain, we apply the zero gradient boundary
conditions.

III. THEORETICAL AND NUMERICAL RESULTS

From the definition of the dimensionless groups C�, Cs,
and Cdv, we find that the flow can be divided into four re-
gimes based on the film thickness when the radial length
scale is fixed. In the first regime �regime A�, the film thick-
ness is relatively large and the surface tension effect is non-
negligible. Centrifugal force is the dominant driving force
for the wave propagation. The effects of external shearing
and disjoining pressure are negligible, i.e., C��O�1�, Cs

�1, and Cdv�1. In the second regime �regime B�, the film
thickness is thin enough so that the surface tension effect

FIG. 1. The normalized initial geometry of a single hump su-
perposed on a flat film and the evolved film profile at T	0. The
initial hump is a half period of a sine function.
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becomes negligible. Centrifugal force is the only dominant
driving force for the wave propagation. Both external shear-
ing and disjoining pressure effects are negligible, i.e., C�

�1, Cs�1, and Cdv�1. In the third regime �regime C�, the
film thickness is further reduced and the external shearing
force becomes the dominant driving force. The centrifugal
force, surface tension and disjoining pressure effects are neg-
ligible, i.e., Cs
1 and C��1, Cdv�1. In the fourth regime
�regime D�, the film becomes molecularly thin and the dis-
joining pressure effect becomes important. Both external
shearing and disjoining pressure effects are dominant. The
centrifugal force and surface tension effects are negligible,
i.e., Cs
1, Cdv�O�1�, and C��1. In between the four re-
gimes are the transition regions.

A. Regime of flow with non-negligible surface tension effect

When the film thickness is relatively large, the centrifugal
force and surface tension terms are dominant. The external
shearing and disjoining pressure terms are negligible. Con-
sequently, Eq. �8� simplifies into

��RH�
�T

+
�

�R
�R2H3 + C�RH3 �

�R

 1

R

�

�R
�R

�H

�R
�� = 0,

�9�

which is strongly nonlinear and cannot be solved analyti-
cally. Our numerical simulation shows that the surface wave
is driven to migrate from the inner radial position to the outer
radial position �see Fig. 2 for the case of a sine hump wave�.
The wave’s magnitude is reduced and its wavelength is in-
creased. Surface tension smears the wave and adds two dips
�or over shoots� to the leading and trailing edges of a hump
wave �or a valley wave�. The surface tension smearing effect
and the size of the dips �or over shoots� all increase with C�.
Surface tension also slightly slows down the propagating
speed of the wave peak. Nevertheless, when C� is reduced to
below O�1�, the surface tension effect becomes negligible

and the wave steeps at the leading/trailing edge of a hump/
valley wave. The wavefront eventually breaks and a shock
wave �hydraulic jump� appears at the leading/trailing edge of
a hump/valley wave as shown in Fig. 2 for a hump wave.
The ripple after the shock wave for the curve corresponding
to C�=0 in Fig. 2 is a numerical artifact. Similar numerical
oscillations can be seen in Fig. 3.

After the formation of a shock, Eq. �9� breaks down lo-
cally within the shock region. Outside the thin shock region,
Eq. �9� remains valid. As a result, Eq. �9� can be integrated to
obtain useful information about the shock dynamics even
after a shock is formed. Similar conclusion holds for the
following regimes.

In our analysis, we assume all the dimensionless param-
eters including C� to be constant. When C� is not a constant
�for example, due to the existence of a tangential temperature
gradient along the interface�, Sur and Bertozzi et al. found
that undercompressive and reverse undercompressive shocks
form for a draining film on a stationary plate driven by the
surface tension gradient against gravity �21�. The shock
wave formation phenomenon studied by Sur and Bertozzi et
al. �21� is irrelevant to the shock wave formation phenom-
enon under the current study.

B. Regime of flow dominated by centrifugal force

When the centrifugal force term is dominant �C��1, Cs
�1, and Cdv�1�, Eq. �8� simplifies into

�H

�T
+ 3H2�H

�X
+ 2H3 = 0, �10�

with a coordinate transformation X=log�R� and the dropping
of the surface tension, external shearing and disjoining pres-
sure terms. Equation �10� is a damped wave equation and can

be solved by the characteristic method. Let H̃���=H�� ,0� be
the initial film thickness at the initial radial location � �the
starting location of each characteristic curve, see Eq. �13�
and Fig. 1�. Along the characteristic curve

FIG. 2. The effect of surface tension on the wave propagation
for a single hump wave driven by the centrifugal force with Cs=0,
Cdv=0. �See Eq. �17b� for the definition of the breaking time TB

when C�=0.�

FIG. 3. Shock wave formation and propagation phenomenon for
a single hump wave and a single valley wave driven by the cen-
trifugal force with Cs=0, Cdv=0, and C�=0.
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dX

dT
= 3H2, �11�

Eq. �10� becomes

dH

dT
+ 2H3 = 0,

which can be integrated once with the using of the initial

condition H�� ,0�= H̃��� to yield

H = H̃���/�1 + 4TH̃���2. �12�

After we obtain the film thickness at time T, the transformed
coordinate X along each characteristic curve is determined
by integrating Eq. �11� once with the using of the initial
condition �X�t=0=log��� to yield

X = log��� + 3
4 log�1 + 4H̃���2T� ,

from which we obtain the original radial coordinate

R = ��1 + 4H̃���2T�3/4. �13�

Along each characteristic curve Eq. �13�, the film thickness
is determined by Eq. �12�.

Under certain conditions, characteristic curves repre-
sented by Eq. �13� may intersect each other. When the inter-
section of characteristics occurs, H becomes multivalued and
the wave breaks. The wave first breaks at dR /d�=0, or

4H̃2���T+6�H̃���H̃����T+1=0 from Eq. �13�. A prime in this
paper denotes a differentiation of the variable, for example,

H̃����=dH̃��� /d�. The corresponding breaking time is

TB = −
1

H̃��B��4H̃��B� + 6�H̃���B��
, �14a�

which is at its minimum when �=�B. Since we always have

T	0 and H̃���	0, the breaking condition becomes

2H̃��� + 3�H̃���� � 0. �14b�

As a result, if the initial film thickness profile has a large
enough negative slope, the wave eventually breaks.

When the breaking condition Eq. �14b� is satisfied, from
Eqs. �13� and �14a�, we can exactly calculate the initial wave
breaking location

RB = �B�1 + 4H̃��B�2TB�3/4 = �B� 3H̃���B��B

2H̃��B� + 3H̃���B��B

�3/4

.

�15�

The appearance of multiple values for H �the breaking of
the wave� corresponds to the formation of a shock wave
�hydraulic jump�. To understand the shock formation and
propagation dynamics, we study the evolution of a single
sine hump wave �with a plus sign� or a single valley wave
�with a minus sign� superposed on a flat film �see Fig. 1 for
the hump wave�:

H��,0� = �
1, � � �l

1 ± H0 sin� � − �l

�0
�� , �l � � � �l + �0

1, �l + �0 � � ,
�
�16�

where H0 is the initial wave magnitude, �0 is the initial
wavelength, and �l is the initial radial coordinate of the trail-
ing edge of the wave, respectively. The breaking condition
�Eq. �14b�� for the hump described by Eq. �16� becomes

H0 � HB =
2

3�

�0

�l + �0
, �17a�

where HB is the required minimum hump height for the
hump wave to break. The wave first breaks at the hump’s
leading edge ��B=�l+�0� at time

TB =
�0

6�H0��l + �0� − 4�0
, �17b�

and at the radial location

RB = ��l + �0�
 3�H0��l + �0�
3�H0��l + �0� − 2�0

�3/4

. �17c�

Our full numerical solution of Eq. �8� clearly demon-
strates the formation of shock waves at the leading edge of a
hump and at the trailing edge of a valley when the breaking
condition is satisfied �see Fig. 3�. Needham and Merkin’s
results also indicated the formation of shock wave driven by
the centrifugal force for a different flow problem �22�.

Figure 4 shows that the sine hump wave �solid line� de-
scribed by Eq. �16� breaks when the breaking condition is
satisfied �H0=5HB, see Eq. �17a�� and the wave does not
break �dashed line� when the breaking condition is slightly

FIG. 4. Breaking sine hump wave �solid line� when the breaking
condition is satisfied �H0=5HB, see Eq. �17a�� and nonbreaking
sine hump wave �dashed line� when the breaking condition is
slightly not satisfied �H0=0.99HB� with Cs=0, Cdv=0, and C�

=0. The dotted line indicates the wave breaking location RB1 pre-
dicted by Eq. �17c� for the breaking hump wave.
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not satisfied �H0=0.99HB�. The dotted line indicates the
wave breaking location RB1 predicted by Eq. �17c� for the
breaking hump wave. Figure 4 demonstrates that our theo-
retical prediction of the wave breaking conditions agrees
very well with our full numerical simulation results.

From Eqs. �14a� and �14b�, we know that a wave with an
initial profile marginally satisfying the breaking condition

2H̃��� + 3�H̃���� = 0, �18�

breaks at time TB=�. Equation �18� can be integrated once to
yield

H̃��� = �1� −2/3, �19�

where �1 is an integration constant. Equation �19� represents
a group of curves corresponding to different values of �1 and
can be used to judge whether a wave will break or not.
Waves that everywhere have a smaller negative slope than
that of the curve represented by Eq. �19� at their crossing
point do not break. Otherwise, the waves eventually break.
Figure 5 plots both the initial profile for the breaking hump
wave shown in Fig. 4 and the curve represented by Eq. �19�
that crosses the hump at its leading edge. Because the hump
has a larger negative slope than that of the curve represented
by Eq. �19� at the leading edge, the hump wave breaks as
shown in Fig. 4.

C. Regime of flow dominated by external shearing force

When the external shearing force is dominant and the ef-
fects of centrifugal force, surface tension and disjoining pres-
sure are negligible, i.e., Cs
1 and C��1, Cdv�1, Eq. �8�
can be further simplified and transformed into

��

�T
+ �

��

�R
= 0, �20�

after we define a new variable �=2CsRH. Equation �20� is a
nonlinear wave equation and can be solved by the character-
istic method. Along a characteristic curve

R = � + F���T , �21�

we have

� = F��� , �22�

which is a constant. The variable F���=2Cs�H̃��� is the ini-
tial value of � at the starting location � of each characteristic
curve. The wave breaking condition is

F���� = 2Cs�H̃��� + �H̃����� � 0, �23a�

and the breaking time is

TB = − 1/F���B� , �23b�

which is at its minimum when �=�B. The wave eventually
breaks if the initial F��� profile has a negative slope �see Fig.
6�.

When the breaking condition Eq. �23a� is satisfied, from
Eqs. �21� and �23b� we can exactly calculate the initial wave
breaking location

RB =
�B

2H̃���B�

H̃��B� + �BH̃���B�
. �24�

We use the propagation of a single hump wave super-
posed on a flat film �see Figs. 1 and 6� as an example to
illustrate the detailed shock formation and propagation dy-
namics in the current regime. In the region where character-
istic curves intersect, � has multiple values. The multivalued
region for � is replaced by a shock through an equal area
rule �23�

FIG. 5. Initial hump wave profiles and profiles predicted by Eqs.
�19� and �39� that marginally satisfy the breaking conditions �TB

=�� for flow in regimes A and B.

FIG. 6. The diagram of shock fitting method for flow in regime
C. The dashed curve shows the formation of a shock at time T
=6TB �see Eq. �37b� for the definition of TB for a sine hump wave�.
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�2

�1

F���d� =
1

2
�F��1� + F��2����1 − �2� , �25�

where �1 and �2 are the initial radial coordinates of the ends
of a chord, which eventually becomes vertical so that its ends
becomes the ends of a shock at a later time T. The two ends
of the chord evolve along their characteristic curves R1=�1
+F��1�T and R2=�2+F��2� separately. When the chord be-
comes vertical, both R1 and R2 are equal to the shock loca-
tion S �see Fig. 6�. The equal area rule requires the two
shaded areas in Fig. 6 to be equal to each other for the two
ends R1 and R2 to form the ends of a shock at a later time.
When T→�, we have �1	�r and �2→�l. �l and �r are the
initial radial coordinates of the trailing and leading edges of
the hump, respectively. Because �1 is located on the flat por-
tion of the film with an initial thickness H0 ��1	�r and see
Figs. 1 and 6�, F��1� lies on a line passing through the origin
with a constant slope a=2CsH0 �see Fig. 6�. As a result, we
have

F��1� = a�1. �26�

Consequently, the equal area rule Eq. �25� becomes

A = 1
2 �F��2� − a�2���1 − �2� , �27�

where A=��l

�r�F���−a��d� is the initial area of the hump
above the line �=a� �see Fig. 6�. At time T, from the char-
acteristic curve we have the shock location

S = �1 + F��1�T = �2 + F��2�T , �28�

which leads to

�1 =
�2 + F��2�

1 + aT
, �29�

by using Eq. �26�. Substituting Eq. �29� into the equal area
rule Eq. �27�, we obtain

F��2� = a�2 +�2A�1 + aT�
T

. �30�

When T→�, we have

�2 → �l. �31�

From Eqs. �26�–�31�, we obtain the shock location at time T,

S = �2 + F��2�T = �1 + aT��l + �2AT�1 + aT� , �32a�

and the jump of � across the shock wave,

��� = F��2� − F��1� =� 2A

T�1 + aT�
.

From the jump of � we can calculate the shock strength �see
Fig. 1 for the definition of H�

H =
���

2CsS
=

1

2CsS
� 2A

T�1 + aT�
. �32b�

The hump wavelength at time T becomes

� = S − Rl = S − �l�1 + aT� , �32c�

where Rl=�l+a�lT is the coordinate of the trailing edge of
the hump at time T.

To obtain the wave profile after the shock when T→�,
we expand F��� near �l through a Taylor series expansion

F��� = F��l� + �� − �l�F���l� . �33�

Along the characteristic curve R=�+F���T, we have �=R
−F���T, which is substituted into Eq. �33� to yield

� = 2CsRH = F��� =
F��l� + �R − �l�F���l�

1 + F���l�T
. �34�

From the definition F���=2Cs�H̃ and the relation H̃��l�=H0,

we obtain F���l�=2Cs�H0+�lH�˜ ��l��. Consequently, we ob-
tain the hump’s profile after the shock from Eq. �34�

H�R,T� =
F���
2CsR

=

H0 + �lH�˜ ��l� − �l
2H̃���l�

1

R

1 + 2CsT�H0 + �lH�˜ ��l��
. �35�

Equation �35� shows that the hump profile after the shock at
time T is not a straight line. Outside the hump wave, the film
remains flat and its decreasing film thickness is described by
the result of Middleman �6� �see Figs. 1 and 7�.

When a valley wave �the inverse of a hump wave� is
superposed on a flat film, shock wave forms at the valley’s
trailing edge if the wave breaking condition Eq. �23a� is
satisfied. At T→�, by a similar shock fitting procedure, we
obtain the valley’s shock location, shock strength, wave-
length and wave profile as

FIG. 7. Shock wave formation and propagation phenomenon of
a single hump wave �or a single valley wave� when the external
shearing is dominant with Cs=54, Cdv=0, and C�=0. The dashed
line represents the theoretical results �Eqs. �32a�–�32c� and �35� for
the hump wave and Eqs. �36a�–�36d� for the valley wave�.
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S�T� = �1 + aT��r − �2AT�1 + aT� , �36a�

H =
F��1� − F��2�

2CsS
=

1

2CsS
� 2A

T�1 + aT�
, �36b�

� = �1 + aT��r − S , �36c�

and

H�R,T� =
− �r

2H���r� + �H0 + �rH���r��R
�1 + 2Cs�H0 + �rH���r��T�R

, �36d�

where �r is the initial radial coordinate of the leading edge of
the valley wave.

When the external shearing is dominant, our theory and
simulations show that shocks form at the leading edge of a
hump wave and the trailing edge of a valley wave �described
by Eq. �16�� when the breaking condition is satisfied �see
Fig. 7�. Figure 7 shows that our theoretical predictions of the
shock properties and the wave profile after the shock �Eqs.
�32a�–�32c�, �35�, and �36a�–�36d�� agree well with our full
numerical solutions of Eq. �8� even at very small time T
when Cs=54, Cdv=0, and C�=0.

For the sine hump wave described by Eq. �16�, the break-
ing condition �23a� becomes

H0 � HB =
�0

���l + �0�
, �37a�

where HB is the required minimum hump height for the
wave to break at a later time. The wave first breaks at its
leading edge ��B=�r=�l+�0� at the breaking time

TB =
�0

2Cs��H0��l + �0� − �0�
, �37b�

and at the radial location

RB =
�H0��l + �0�2

�H0��l + �0� − �0
. �37c�

Figure 8 shows that the sine hump wave �solid line� de-
scribed by Eq. �16� breaks when the breaking condition is
satisfied �H0=5HB, see Eq. �37a�� and the wave does not
break �dashed line� when the breaking condition is slightly
not satisfied �H0=0.99HB�. The dotted line indicates the
wave breaking location RB1 predicted by Eq. �37c� for the
breaking hump wave. Figure 8 demonstrates that our theo-
retical prediction of the wave breaking conditions agrees
well with our full numerical simulation results.

From Eqs. �23a� and �23b�, we know that a wave with an
initial profile marginally satisfying the breaking condition is

H̃��� + �H̃���� = 0, �38�

which breaks at time TB=�. Equation �38� can be integrated
once to yield

H̃��� =
�2

�
, �39�

where �2 is an integration constant. Equation �39� represents
a group of curves corresponding to different values of �2 and
can be used to judge whether a wave will break or not.
Waves that everywhere have a smaller negative slope than
that of the curve represented by Eq. �39� at their crossing
point do not break. Otherwise, the waves eventually break.
Figure 5 plots both the initial profile for the breaking hump
wave shown in Fig. 8 and the curve represented by Eq. �39�
that crosses the hump at its leading edge. Because the hump
has a larger negative slope than that of the curve represented
by Eq. �39� at the leading edge, the hump breaks as shown in
Fig. 8. Nevertheless, the value of F���� provides a more con-
venient way to judge whether a wave breaks or not. If
F�����0 at certain location, the wave breaks. Otherwise the
wave does not break.

We need to point out that all the results and conclusions
for the current regime �IIIC� hold exactly if the disk is not
rotating and the liquid film flow is driven by an immiscible
external flow blowing normal to the disk surface under the
condition that the external pressure, surface tension, and dis-
joining pressure effects are negligible. When an immiscible
external flow blows normal to a disk �so called stagnation
point flow �16,24��, the external shearing stress on the inter-
face has a form similar to that of Eq. �2b�. The surface ten-
sion has a similar effect on the wave propagation as in re-
gime A.

D. Regime of flow dominated by external shearing force and
disjoining pressure

When the film becomes molecularly thin, the disjoining
pressure due to van del Waal’s force becomes important. At
the same time, the external shearing force is still dominant
�Cs
1, Cdv�O�1�, and C��1�. The centrifugal force and
surface tension terms are negligible. Equation �8� simplifies
into

FIG. 8. Breaking sine hump wave �solid line� when the breaking
condition is satisfied �H0=5HB, see Eq. �37a�� and nonbreaking
sine hump wave �dashed line� when the breaking condition is
slightly not satisfied �H0=0.99HB� with Cs=54, Cdv=0, and
C�=0. The dotted line indicates the wave breaking location RB1

predicted by Eq. �37c� for the breaking hump wave.
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��RH�
�T

+
�

�R
�CsR

2H2 − Cdv
R

H

�H

�R
� = 0, �40�

which is difficult to solve analytically. The disjoining pres-
sure term for a wetting film acts as a diffusion term and
smears the shock as shown in our numerical results �Fig. 9�.

Results in regime D also hold for the flow of liquid films
driven by the external stagnation point flow on a nonrotating
disk.

IV. DISCUSSION

Figure 10�a� plots the evolution of the shock location of a
hump wave �Fig. 1� for the cases C�=0, Cs=0, Cdv=0 and
C�=0, Cs=54, Cdv=0 and the location of hump’s peak for
the case C�=0, Cs=54, Cdv=1.7. Centrifugal force drives the
shock �or peak� to migrate outwards slowly. The external
shearing force greatly speeds up the outward propagation of
the shock �or peak�. Disjoining pressure slightly slows down
the propagation. Figure 10�a� also shows that Eq. �32a� pro-
vides a good prediction of the peak location of the hump not
only for flow in regime C �Cs
1,Cdv�1� but also for flow
in regime D �Cs
1,Cdv�O�1��.

Figure 10�b� plots the evolution of the shock strength H
of a hump wave �Fig. 1� for the cases C�=0, Cs=0, Cdv=0
and C�=0, Cs=54, Cdv=0. For the purpose of comparison,
we also plotted the evolution of H �the relative height of
the hump from the flat film surface� for the case C�=0, Cs
=54, Cdv=1.7. Figure 10�b� indicates that centrifugal force,
external shearing force and disjoining pressure all reduce the
height of a hump wave �wave planarization�. External shear-
ing plays a dominant planarization role when the film thick-
ness is thin enough. Figure 10�b� also shows that Eq. �32b�
provides a good prediction of H not only for flow in regime
C �Cs
1,Cdv�1� but also for flow in regime D �Cs


1,Cdv�O�1��.
Centrifugal force, external shearing, and disjoining pres-

sure all increase the hump’s wavelength as shown in Fig.

10�c�. External shearing, and disjoining pressure have a
dominant effect to increase the wavelength when the film is
thin enough.

We have observations similar to Figs. 10�a�–10�c� for a
single valley wave superposed on a flat film.

Another interesting phenomenon is the merging of waves
induced by the disjoining pressure. The form of the final
merged wave strongly depends on the overall volume of the
wave train above the flat film. When the overall volume of a
wave train above the flat film is positive, the wave train
eventually merges into a single hump �see Fig. 11�a��. When

FIG. 9. Propagation of a single hump wave �or a single valley
wave� when the disjoining pressure is nonnegligible with Cs=54,
Cdv=1.7, and C�=0.

FIG. 10. Shock wave evolution of a single hump wave with
C�=0: �a� Shock �or peak� location; �b� shock strength �or relative
height�; �c� Wavelength. The hump is cut off at 5% of its height in
calculating the wavelength in the numerical simulation.
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the overall volume of a wave train above the flat film is
negative, the wave train merges into a single valley �see Fig.
11�b��. When the overall volume of the wave train above the
flat film is zero, the wave train merges into a single hump
and a single valley with an equal amount of volume above or
below the flat film. The single hump and valley do not merge
afterwards �in theory it takes infinitely long time for them to
merge, i.e., the wave train is totally planarized�. The order of
the single hump and single valley depends on how the wave
train is started and ended. For the case shown in Fig. 12�a�,
the wave train merges into a single hump at the inner edge
and a single valley at the outer edge. Figure 12�b� shows a
reverse situation.

V. CONCLUSION

Surface wave propagation phenomena of a wetting liquid
film above a rotating or non-rotating disk are studied numeri-
cally and theoretically. For films on a rotating disk, the sur-
face wave evolution is driven by the centrifugal spinning.

For films on a nonrotating disk, the surface wave evolution is
driven by the external shearing force induced by an immis-
cible flow blowing normal to the disk.

Our results show that the surface wave is driven to mi-
grate outwards by the centrifugal and external shearing
forces. The mobility of surface wave increases with the disk
spinning speed and film thickness. Surface tension and dis-
joining pressure slow down the wave propagation. Shock
wave may form and propagate driven by the centrifugal force
and external shearing. Surface tension and disjoining pres-
sure tend to smear the shock front. Multiple waves are
merged by the disjoining pressure when the film becomes
molecularly thin. Centrifugal force, surface tension, external
shearing, and disjoining pressure, all planarize the surface
wave by reducing its undulation and increasing its wave-
length. When the film is thin enough, external shearing force
and disjoining pressure dominate the wave planarization pro-
cess.

FIG. 11. The merging of a wave train into a single hump �a� or
valley �b� when the initial overall volume of the wave train above
the flat film is positive or negative: �a� the volume above the flat
film is positive; �b� the volume above the flat film is negative �Cs

=20, Cdv=1.7, C�=0�.

FIG. 12. The merging of a wave train into a single hump fol-
lowed by a valley �a� or a single valley followed by a single hump
�b� when the initial overall volume of the wave train above the flat
film is zero: �a� the wave train is initially started with a hump and
ended with a valley; �b� the wave train is initially started with a
valley and ended with a hump. �Cs=20, Cdv=1.7, C�=0�.
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